102 research outputs found

    Depression in autoimmune diseases

    Full text link
    Up to 50% of patients with autoimmune diseases show an impairment of health-related quality of life and exhibit depression-like symptoms. The immune system not only leads to inflammation in affected organs, but also mediates behavior abnormalities including fatigue and depression-like symptoms. This review focuses on the different pathways involved in the communication of the immune system with the neuronal network and the body's timing system. The latter is built up by a hierarchically organized expression of clock genes. As discussed here, the activation of the immune system interferes with high amplitude expression of clock genes, an effect which may play a pivotal role in depression-like behavior in autoimmune diseases

    Effects of chronic social stress on oligodendrocyte proliferation-maturation and myelin status in prefrontal cortex and amygdala in adult mice

    Full text link
    Stress-related neuropsychiatric disorders present with excessive processing of aversive stimuli. Whilst underlying pathophysiology remains poorly understood, within- and between-regional changes in oligodendrocyte (OL)-myelination status in anterior cingulate cortex and amygdala (ACC-AMY network) could be important. In adult mice, a 15-day chronic social stress (CSS) protocol leads to increased aversion responsiveness, accompanied by increased resting-state functional connectivity between, and reduced oligodendrocyte- and myelin-related transcript expression within, medial prefrontal cortex and amygdala (mPFC-AMY network), the analog of the human ACC-AMY network. In the current study, young-adult male C57BL/6 mice underwent CSS or control handling (CON). To assess OL proliferation-maturation, mice received 5-ethynyl-2'-deoxyuridine via drinking water across CSS/CON and brains were collected on day 16 or 31. In mPFC, CSS decreased the density of proliferative OL precursor cells (OPCs) at days 16 and 31. CSS increased mPFC myelin basic protein (MBP) integrated density at day 31, as well as increasing myelin thickness as determined using transmission electron microscopy, at day 16. In AMY, CSS increased the densities of total CC1+ OLs (day 31) and CC1+/ASPA+ OLs (days 16 and 31), whilst decreasing the density of proliferative OPCs at days 16 and 31. CSS was without effect on AMY MBP content and myelin thickness, at days 16 and 31. Therefore, CSS impacts on the OL lineage in mPFC and AMY and to an extent that, in mPFC at least, leads to increased myelination. This increased myelination could contribute to the excessive aversion learning and memory that occur in CSS mice and, indeed, human stress-related neuropsychiatric disorders

    Translating the evidence for gene association with depression into mouse models of depression-relevant behaviour: current limitations and future potential

    Full text link
    Depression is characterised by high prevalence and complex, heterogeneous psychopathology. At the level of aetio-pathology, considerable research effort has been invested to identify specific gene polymorphisms associated with increased depression prevalence. Genome-wide association studies have not identified any risk polymorphisms, and candidate gene case-control studies have identified a small number of risk polymorphisms. It is increasingly recognised that interaction between genotype and environmental factors (G×E), notably stressful life events, is the more realistic unit of depression aetio-pathology, with G×E evidence described for a small number of risk polymorphisms. An important complementary approach has been to describe genes exhibiting brain region-specific expression changes in depression. Mouse models of depression informed by the human evidence allow for the study of causality, but to-date have also yielded limited insights into depression aetio-pathology. This review of the translational evidence integrates human and mouse research approaches and evidence. It also makes specific recommendations in terms of how future research in human and mouse should be designed in order to deliver evidence for depression aetio-pathology and thereby to inform the development of novel and improved antidepressant treatments

    Effects of antenatal dexamethasone treatment on glucocorticoid receptor and calcyon gene expression in the prefrontal cortex of neonatal and adult common marmoset monkeys

    Get PDF
    BACKGROUND: Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to promote fetal lung maturation in at-risk preterm births, but there is emerging evidence of subsequent neurobehavioral abnormalities in these children e.g. problems with inattention/hyperactivity. However, molecular pathways mediating effects of glucocorticoid overexposure on motor and cognitive development are poorly understood. METHODS: In this study with common marmoset monkeys, we investigated for neonatal and adulthood effects of antenatal DEX treatment on the expression of the corticosteroid receptors and also calcyon, a risk gene for attention-deficit/hyperactivity disorder, in the prefrontal cortex (PFC). Pregnant marmosets were exposed to DEX (5 mg/kg body weight) or vehicle during early (days 42-48) or late (days 90-96) stages of the 144-day pregnancy. RESULTS: In neonates, relative to controls, glucocorticoid receptor (GR) mRNA levels were significantly reduced after the late DEX treatment in the medial, orbital and dorsal PFC and after the early DEX treatment in the dorsal PFC. The early DEX exposure, specifically, resulted in significant reduction in calcyon mRNA expression in the medial, orbital, dorsal and lateral PFC relative to controls. Mineralocorticoid receptor (MR) mRNA levels were not significantly affected by DEX treatment. In adults, PFC GR, calcyon, and MR mRNA levels were not significantly affected by early or late prenatal DEX treatment. CONCLUSION: These findings indicate that antenatal DEX treatment could lead to short-term alterations in PFC expression of the GR and calcyon genes, with possible neurodevelopmental functional consequences

    Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16

    Full text link
    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABAB receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABAB receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12(-/-)) exhibit increased auditory fear learning and that Kctd12(+/-) mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABAB receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16(-/-) and Kctd16(+/-) mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16(-/-) and Kctd16(+/-) mice. When fear memory was tested on the following day, Kctd16(-/-) mice exhibited less extinction of auditory fear memory relative to WT and Kctd16(+/-) mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16(+/-) mice. Relative to WT, both Kctd16(+/-) and Kctd16(-/-) mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABAB receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders

    Somatostatin receptor 4 agonism normalizes stress-related excessive amygdala glutamate release and Pavlovian aversion learning and memory in rodents

    Full text link
    Background Excessive processing of aversive life events is a major pathology in stress-related anxiety and depressive disorders. Current pharmacological treatments have rather non-specific mechanisms of action. Somatostatin is synthesized and released as an inhibitory co-neurotransmitter by specific GABA interneurons and one of its receptors, SSTR4, is localized in brain regions involved in adaptive aversion processing and implicated in negative valence neuropathology, including the amygdala. Methods Rat and mouse experiments were conducted to investigate effects of specific SSTR4 agonism on neurobehavioral aversion processing including any normalization of stress-related hyper-responsiveness. A mouse experiment to investigate stress and SSTR4 agonism effects on reward processing was also conducted. Results In male rats (N=5-10/group) fitted with glutamate biosensors in basolateral amygdala, SSTR4 agonism attenuated glutamate release to restraint stress in control rats and particularly in rats previously exposed to chronic corticosterone. In male mice (N=10-18/group), SSTR4 agonism dose-dependently attenuated Pavlovian tone-footshock learning and memory measured as freezing behavior, both in controls (CON) and following exposure to chronic social stress (CSS) which induces excessive Pavlovian aversion learning-memory. Specificity of SSTR4 agonism effects to aversion learning-memory was demonstrated by absence of effects on discriminative reward (sucrose) learning-memory in both CON and CSS mice; SSTR4 agonism did increase reward-to-effort valuation in a dose-dependent manner, and in both CON mice and mice exposed to CSS which attenuates reward motivation. Conclusions These neuropsychopharmacological findings add substantially to the preclinical proof-of-concept evidence for SSTR4 agonism as a treatment in anxiety and depressive disorders. Keywords Somatostatin receptor 4 Amygdala Stress Aversion Reward GABA interneuro

    Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression

    Get PDF
    Electroconvulsive therapy (ECT) is an effective treatment for depression, but can have negative side effects including amnesia. The mechanisms of action underlying both the antidepressant and side effects of ECT are not well understood. An equivalent manipulation that is conducted in experimental animals is electroconvulsive seizure (ECS). Rodent studies have provided valuable insights into potential mechanisms underlying the antidepressant and side effects of ECT. However, relatively few studies have investigated the effects of ECS in animal models with a depression-relevant manipulation such as chronic stress. In the present study, mice were first exposed to chronic social stress (CSS) or a control procedure for 15 days followed by ECS or a sham procedure for 10 days. Behavioral effects were investigated using an auditory fear conditioning (learning) and expression (memory) test and a treadmill-running fatigue test. Thereafter, immunohistochemistry was conducted on brain material using the microglial marker Iba-1 and the cholinergic fibre marker ChAT. CSS did not increase fear learning and memory in the present experimental design; in both the control and CSS mice ECS reduced fear learning and fear memory expression. CSS induced the expected fatigue-like effect in the treadmill-running test; ECS induced increased fatigue in CSS and control mice. In CSS and control mice ECS induced inflammation in hippocampus in terms of increased expression of Iba-1 in radiatum of CA1 and CA3. CSS and ECS both reduced acetylcholine function in hippocampus as indicated by decreased expression of ChAT in several hippocampal sub-regions. Therefore, CSS increased fatigue and reduced hippocampal ChAT activity and, rather than reversing these effects, a repeated ECS regimen resulted in impaired fear learning-memory, increased fatigue, increased hippocampal Iba-1 expression, and decreased hippocampal ChAT expression. As such, the current model does not provide insights into the mechanism of ECT antidepressant function but does provide evidence for pathophysiological mechanisms that might contribute to important ECT side-effects.</p

    Chronic Social Stress Leads to Reduced Gustatory Reward Salience and Effort Valuation in Mice

    Get PDF
    Pathology of reward processing is a major clinical feature of stress-related neuropsychiatric disorders including depression. Several dimensions of reward processing can be impacted, including reward valuation/salience, learning, expectancy and effort valuation. To establish the causal relationships between stress, brain changes, and reward processing pathologies, valid animal models are essential. Here, we present mouse experiments investigating behavioral effects of chronic social stress (CSS) in association learning tests of gustatory reward salience and effort valuation. The reward salience test (RST) comprised Pavlovian pairing of a tone with gustatory reward. The effort valuation test (EVT) comprised operant responding for gustatory reinforcement on a progressive ratio schedule (PRS). All testing was conducted with mice at 100% baseline body weight (BBW). In one experiment, mice underwent 15-day CSS or control handling (CON) and testing was conducted using sucrose pellets. In the RST on days 16–17, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a shallow EVT on days 19–20, CSS mice attained a lower final ratio than CON mice. In a second CSS experiment, mice underwent CSS or CON and testing was conducted with chocolate pellets and in the presence of standard diet (low effort/low reward). In the RST on days 16–18, CSS mice made fewer feeder responses and had a longer tone response latency, than CON mice. In a steep EVT on days 19–20, CSS and CON mice attained less pellets than in the RST, and CSS mice attained a lower final ratio than CON mice. At day 21, blood levels of glucose and the satiety adipokine leptin were similar in CSS and CON mice. Therefore, CSS leads to consistent reductions in reward salience and effort valuation in tests based on association learning. These reward pathology models are being applied to identify the underlying neurobiology and putative molecular targets for therapeutic pharmacology

    Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice

    Get PDF
    Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets

    Effects of GPR139 agonism on effort expenditure for food reward in rodent models: Evidence for pro-motivational actions

    Full text link
    Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy
    • …
    corecore